博客
关于我
Tensorflow: RNN
阅读量:750 次
发布时间:2019-03-23

本文共 655 字,大约阅读时间需要 2 分钟。

LSTM网络简介

LSTM网络全称为长短期记忆网络(Long Short-Term Memory),是一种 (<要素启动) 门控的 neural network,能够处理长距离依赖关系,在自然语言处理等任务中表现优异。其核心是引入了记忆单元(Cell State),使得模型能够捕捉长期依赖信息。

LSTM 的核心概念

  • Cell State 代表记忆单元,存储当前状态信息,通过门控机制与输入结合,更新记忆内容。
  • Forget Gate 滥用门控制记忆单元中的某些信息丢失,防止过载。
  • Input Gate 门控机制决定输入ignal的重要性,决定是否将新信息加入记忆单元。
  • Output Gate 决定记忆单元中的信息释放到隐层的比例。
  • LSTM 的工作机制

  • 输入序列 输入序列经过 LSTM 网络,逐个时间步输入。
  • 门控机制 基于当前激活状态和输入信号,门控网络更新记忆单元和隐藏状态。
  • 顺序恢复 输出序列逐次输出,通过自身的门控机制逐步恢复输出信息的时序性。
  • 实际应用

    LSTM 在时间序列预测、机器翻译、问答系统等任务中效果显著。其特殊的门控机制使其能够处理长距离依赖关系,在捕捉语义和上下文信息方面具有独特优势。

    LSTM 通过 gating mechanism(门控机制)解决了长序列信息更新难题。通过设置门控权重,模型能够灵活控制记忆内容,确保模型能够有效记忆长期信息。

    希望以上内容能帮助您更好地理解 LSTM 网络的核心原理和实际应用。如需了解具体实现细节或深入探讨某一技术点,欢迎随时交流!

    转载地址:http://qduzk.baihongyu.com/

    你可能感兴趣的文章
    localhost:5000在MacOS V12(蒙特利)中不可用
    查看>>
    mac mysql 进程_Mac平台下启动MySQL到完全终止MySQL----终端八步走
    查看>>
    Mac OS 12.0.1 如何安装柯美287打印机驱动,刷卡打印
    查看>>
    MangoDB4.0版本的安装与配置
    查看>>
    Manjaro 24.1 “Xahea” 发布!具有 KDE Plasma 6.1.5、GNOME 46 和最新的内核增强功能
    查看>>
    mapping文件目录生成修改
    查看>>
    MapReduce程序依赖的jar包
    查看>>
    mariadb multi-source replication(mariadb多主复制)
    查看>>
    MaterialForm对tab页进行隐藏
    查看>>
    Member var and Static var.
    查看>>
    memcached高速缓存学习笔记001---memcached介绍和安装以及基本使用
    查看>>
    memcached高速缓存学习笔记003---利用JAVA程序操作memcached crud操作
    查看>>
    Memcached:Node.js 高性能缓存解决方案
    查看>>
    memcache、redis原理对比
    查看>>
    memset初始化高维数组为-1/0
    查看>>
    Metasploit CGI网关接口渗透测试实战
    查看>>
    Metasploit Web服务器渗透测试实战
    查看>>
    Moment.js常见用法总结
    查看>>
    MongoDB出现Error parsing command line: unrecognised option ‘--fork‘ 的解决方法
    查看>>
    mxGraph改变图形大小重置overlay位置
    查看>>